
Hilbert II

Presentation of

Formal Correct

Mathematical Knowledge

Basic Concept

Michael Meyling

March 31, 2008

2

The source for this document can be found here:

http://qedeq.org/0_03_09/doc/project/qedeq_basic_concept.xml

Copyright by the authors. All rights reserved.

If you have any questions, suggestions or want to add something to the list
of modules that use this one, please send an email to the address mailto:
mime@qedeq.org

http://qedeq.org/0_03_09/doc/project/qedeq_basic_concept.xml
mailto:mime@qedeq.org
mailto:mime@qedeq.org

Contents

Executive Summary 5

Preface 7

1 Introduction 9
1.1 Motivation . 9
1.2 Gödel’s Incompleteness Theorem 9
1.3 Goals . 10

2 Functional Specification 11
2.1 Functional and Data Requirements 11

2.1.1 Mathematics . 11
2.1.2 QEDEQ Format . 11

2.2 Use cases . 12
2.2.1 REMAPDF Reading mathematical text. 12
2.2.2 REMAHTML Reading mathematical text. 12
2.2.3 REMAJAVA Reading mathematical text. 12
2.2.4 CHECKPRE Check preconditions for applying. 13
2.2.5 TRLATEX Transformation of LATEX files. 13
2.2.6 GENLATEX Generation of LATEX files. 13
2.2.7 GENHTML Generation of HTML files. 13
2.2.8 CHECKTEO Formal verification of theorem. 13

2.3 Non Goals . 13

3 Other Requirements 15

4 Technical Specification 17
4.1 Software architecture . 17
4.2 Third party tools and libraries. 17

5 Project Plan 19

Index 21

3

4 CONTENTS

Executive Summary

The project Hilbert II deals with presentation and documentation of math-
ematical knowledge. Therefore Hilbert II supplies a program suite for the
realization of the related tasks. Also the documentation of basic mathematical
theories is a main purpose of this project.

This document is a service description of the program suite and its main features.
This roughly concept should enable a mathematician to understand the vision
and the contents of Hilbert II.

The goals of this project are as follows.

Formal correct but readable mathematical knowledge should be made freely
accessible in decentralized manner within the internet.

• Formal correct means checkable by a proof verifier. For this reason the
mathematical formulas are written in a formal language that includes a
first order predicate calculus. This makes a mechanical analysis possible.
For example the enquiry if a theorem depends from a certain axiom could
be answered automatically.

• The presentation shall be readable like an ordinary mathematical text-
book. This means text and common informal proofs. There are even dif-
ferent detail levels possible. One of the most detailed form of a proof is a
formal proof.

• Manifestations of these textbooks in PDF files, LATEX files or HTML pages
are freely accessible in the world wide web. It also stands for “free” in the
sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or non
commercially.

• The knowledge is organized decentralized because it is spread over the
internet with or without cross references to each other. So already proven
theorems could be used elsewhere.

To achieve these objectives the mathematical knowledge is organized in so called
QEDEQ modules. Such a module is a XML file that is in principle already
structured like a common LATEX file. It contains LATEX text for different detail
levels, LATEX templates to display the formal contents and the formal contents
itself. The proof checker only addresses the formal content. Other programs
could generate LATEX and HTML files for given detail levels out of the QEDEQ
modules.

There should be also a QEDEQ viewer that can directly view QEDEQ modules
and switch between the different explanation levels. It can also analyze the
dependencies between the theorems and show the derivation of a proposition to
its axomatic roots.

5

6 CONTENTS

This document was already generated out of something like the following XML
file:

http://www.qedeq.org/current/doc/project/qedeq_basic_concept.xml.

This is still a “living document” and is updated from time to time. Especially
at the locations marked with “+++” additions and improvements are planed.

Preface and Introduction 1 describe the project background and vision. Chap-
ter 2 gives more details about the functional requirements. Other requirements
are listed in chapter 3. Chapter 4 provides some information about the technichal
specifications and software architecture. Last but not least a very rudimentary
project plan shows the different development phases.

http://www.qedeq.org/current/doc/project/qedeq_basic_concept.xml

Preface

This document is the result of a lifelong dream. No more insecurity about the
correctness of mathematical proofs. The goal of Hilbert II is decentralized
access to verified and readable mathematical knowledge. As it’s name already
suggests, this project is in the tradition of Hilbert’s program.

During my mathematical education I found it difficult to balance the detail
deepness of my proofs. Sometimes I needed even for simple steps several lem-
mata. Occasionally my argumentation was too short and from time to time even
incorrect.

Once in a while I tried to write down nearly formal proofs. That often had
the high danger of not seeing the wood for the trees. Formal proofs kill the
mathematical spirit and dry mathematics out into a dead skeleton.1

Some parts of this text were written within the great insular landscape of Am-
rum. The sea, the sand and the wind created such an inspirational environment.

But living flesh needs a strong skeleton to give you stability and to make the
muscles work. Even if the skeleton is essential it must not be directly visible.
So only the combination of lively mathematical texts with absolutely reliable
formal background develops the full potential of mathematical knowledge.

I am deeply grateful to my wife Gesine Dräger and our son Lennart for their
support and patience.

Hamburg, August 2007
Michael Meyling

1After a text from Richard Courant :

We must not accept the old blasphemous nonsense that the ultimate justification
of mathematical science is the “glory of the human mind”. Abstraction and gen-
eralization are not more vital for mathematics than individuality of phenomena
and, before all, not more than inductive intuition. Only the interplay of these
forces and their synthesis can keep mathematics alive and prevent its drying out
into a dead skeleton.

.

7

8 CONTENTS

Chapter 1

Introduction

This chapter gives an overview of the project purpose and goals.

1.1 Motivation

Mathematics is a science with a structure that achieved enormous dimensions
in the course of time. This huge stronghold has only a small set theoretic foun-
dation and its firmness rests upon simple predicate calculus mortar. In principle
the assembly could be comprehended by any mathematician. From every newest
turret of mathematical cognition each path of logical dependency could be fol-
lowed all the way down to the set theoretic roots.

But this is practically impossible. It simply costs too much time to follow every
single step in all it’s details. Common practice for a mathematician is the use of
references to more or less basic theorems that are proved elsewhere. Hopefully all
of these referencing chains will end at axioms. The large number of referencing
chains together with the experience that even standard works contain mistakes
increase the error probability. Furthermore top level results are often verified by
few people only.

One must be even more confident that all references match, that every single pre-
condition is fulfilled to apply the theorem. Often preconditions are well hidden,
e.g. “note that from this point on it will be assumed that every ring is com-
mutative” as mentioned in the third chapter. This increases the difficulties for
a mathematician who crosses the boarder of her discipline to use mathematical
results. The understanding can also be aggravated by unknown nomenclature,
field specific conventions and definitions and special proof techniques. One has
to acquire their meanings and learn their usage. It simply costs a lot of time to
be cocksure.

Another aspect is the question of free access to mathematical knowledge. If
mathematical textbooks are still buyable their price is high and access to a rel-
evant and nearby library is often limited. But mathematical knowledge belongs
to the worldwide cultural assets. This knowledge should be freely available for
everybody.

1.2 Gödel’s Incompleteness Theorem

A consistent and complete axiomatization of mathematics is impossible. If an
recursive axiomatizable theory is sufficiently strong and consistent it will have
undecidable sentences.

9

10 CHAPTER 1. INTRODUCTION

So there is clearly no hope for a complete formalization of mathematics? In a
certain sense this is false! The proof of Gödel’s incompleteness theorem could
be formulated within a formal language too. One can prove, within this sys-
tem, that a similar theory1 is incomplete. Because even incompleteness can be
proved within a formal system one could propose that the complete world of
mathematics is formalizable.

1.3 Goals

To solve the problem described above, the following demands are made:

• Proposition formulas should be written in a standardized language.

• References should be easily resolvable.

• Theorems should be checkable by a proof verifier.

• Mathematical standard works should be freely accessible.

Students and professional mathematicians could benefit from Hilbert II. First
of all this project provides a compilation of common mathematical textbooks.
These textbooks are available for free and are easily accessible by internet. They
come in different formats like LATEX, PDF and HTML. They are highly linked
and enable effortless reference resolution.

Furthermore there will be additional textbooks which contain formal proofs for
the theorems. There could also be supplementary texts and documents in other
languages.

So you could start with a mathematical theorem and read a short non formal
proof. If you are puzzled with that proof there might be a more detailed version
and even a formal proof to support your comprehension.

Needless to say Hilbert II offers a publishing framework for mathematical
texts. Starting with a common LATEX text file the mathematical contents is
transferred step by step into a formal language. In the first phase it is not
necessary to provide a formal proof, only a formal notation for formulas is
required. The resulting XML file contains theorems and definitions written in
a formal language and their LATEX visualization. An equivalent to the original
textbook could be generated. Additionally it is possible to analyze the formulas,
even a theorem prover could be attached.

The addition of formal proofs in the second phase might be a little bit painful.
In principle a formal proof is a sequence of formulas which follow logically from
previous proved theorems or proof lines. The last proof line is equal with the
theorem to prove. To make the derivation easily checkable by a proof verifier
these steps must be very small. A common mathematical proof technique is the
usage of assumptions. The so called deduction theorem is a new meta rule. There
are many others and the more are understood by the proof checker the easier
writing formal proofs gets. See also under Mathematics 2.1.1.

There exists a working prototype called Principia Mathematica II. It is fully
capable of first order predicate logic and shows the main features and basic
functionality of Hilbert II. It can verify (prototype) QEDEQ module files
located anywhere in the internet. The prototype has a GUI and can transfer
QEDEQ modules into HTML and LATEX files. You can create and edit your
own new QEDEQ module and publish it in the internet. In the web already
existing QEDEQ modules could be used just by referencing them.

1The formal system analyzes a theory similar to itself.

Chapter 2

Functional Specification

The following is a description of what a Hilbert II does or should do. A func-
tional specification describes how a product will work entirely from the user’s
perspective. It doesn’t care how the thing is implemented. It just talks about
features.

2.1 Functional and Data Requirements

The following contains a specification for each individual functional requirement.

2.1.1 Mathematics

In Hilbert II a formal language is used which enables us to describe most
domains of mathematics. It is a first order predicate calculus based on the text
Elements of Mathematical Logic from P. S. Novikov. The logical axioms and
basic rules originate from the book Principles of Mathematical Logic (Grundzüge
der theoretischen Logik) (1928) by D. Hilbert and W. Ackermann.

Beside logical ones the only axioms in Hilbert II are those of axiomatic set
theory. As usual for mathematics the axioms of all other theories could be ex-
pressed as simple predicate constant definitions. The set theoretic axiom system
used here is the extended form of Neumann-Bernays-Gödel (extended NBG, also
called Morse-Kelley), which fits the needs of the working mathematician. See E.
J. Lemmon’s wonderful Introduction to Axiomatic Set Theory.

2.1.2 QEDEQ Format

The mathematical knowledge of this project is organized in so called QEDEQ
modules. Such a module can be read and edited with a simple text editor. It
could contain references to other QEDEQ modules which lay anywhere in the
world wide web.

A QEDEQ module is built like a mathematical text book. It contains chapters
which are composed of paragraphs each with an axiom, abbreviation, definition
or proposition. Every paragraph has a label and could be referenced by that
label. Essential formal elements of a paragraph are formulas. The formulas are
written in a first order predicate calculus, also the proofs are in this language.
Therefore a proof verifier can check the formulas and their proofs for formal
correctness. In this manner linked mathematical text books could be typed
which have the extended analytic possibilities of the formal language. Beside the

11

12 CHAPTER 2. FUNCTIONAL SPECIFICATION

assured correctness of formulas and proofs there is for example a dependency
analyze easily done.

In addition to the basic rules also other derived rules, so called meta rules,
could be used. A proof that uses meta rules could be automatically transformed
into a proof which only uses the basis rules. Some other language extensions,
for example abbreviations, are established for shorter writing and convenient
argumentation. These extensions can also be automatically removed and trans-
formed into the original system.

We are aware of the fact that this transformation is not in each
case practically realizable. For example it is not possible to write
down the natural number 1000000000000000 completely in set notation:
{{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}, . . .}.

The comprehension of mathematics is not promoted by formal languages. Hence
descriptive texts written in the “colloquial language LATEX” are of great impor-
tance. Lastly those texts carry the mathematical contents for humans. In the
QEDEQ modules of Hilbert II those texts are regular parts. There can also be
different detail levels of texts and proofs. The first levels should be non formal
proofs but common mathematical texts like “trivial”, “follows directly from
definition” or something more elaborated. Then the highest levels are formal
correct proofs. It is also possible to give different proofs, for instance an elegant
short one using the foundation axiom and a long and laborious one without the
foundation axiom.

Out of the QEDEQ module hyperlinked LATEX, HTML or PDF documents can
be generated. These documents look basically like a common mathematical doc-
ument. Before the generation the wanted detail level must be given.

2.2 Use cases

Students and professional mathematicians are the intended audience of
Hilbert II. This project wants to present mathematical knowledge in formal
correct but readable form. In this section the system is described by use cases.
Such a use case gives an example how the system is going to be used. Each use
case has an short name which is written in italics.

2.2.1 REMAPDF Reading mathematical text.

The user is interested in a certain mathematical subject. With an internet
browser she chooses the subject from the Hilbert II web page and finds a
mathematical textbook in PDF format. After flipping some pages online she
saves the document prints it and reads the paper.

2.2.2 REMAHTML Reading mathematical text.

In extension to REMAPDF the mathematical textbook is visible in HTML
format. A fromula shows itself in formal form if the user clicks a certain symbol.
It is also possible to change the detail level or text language.

2.2.3 REMAJAVA Reading mathematical text.

Similar to REMAHTML the browsing is done with an Java pplet or a web
started Java program. Some dependency analyzing capablities are included.

2.3. NON GOALS 13

2.2.4 CHECKPRE Check preconditions for applying.

The user wants to apply a theorem in one of her own proofs. She writes down the
preferences within her proof situation and compares it to those of the theorem
visible in READHTML.

2.2.5 TRLATEX Transformation of LATEX files.

The user wants to transform her ordinary LATEX files with mathematical contents
into the Hilbert II specific QEDEQ format. She skips through the text files to
gather some information about the used mathematical symbols. Text areas that
should be transformed into formal language formulas are marked with a specal
tag. A translator program is started and transforms the LATEX files into QEDEQ
modules. The translator program must have access to some information about
the used function symbols and their arguments. After some manual corrections
the QEDEQ module files have no syntactical errors. Nevertheless formal proofs
for theorems are still missing.

2.2.6 GENLATEX Generation of LATEX files.

The user takes an QEDEQ module file, e.g. one created with TRALATEX, and
starts the creation process for a certain language and level. The result is a LATEX
presentation of her QEDEQ module.

2.2.7 GENHTML Generation of HTML files.

The user generates HTML presentation of her QEDEQ files.

2.2.8 CHECKTEO Formal verification of theorem.

The user checks if a theorem is formal correct.

2.3 Non Goals

Although Hilbert II is no proof finder in the strong sense it tries to support
common mathematical proof techniques.1

This means that a very detailed informal proof should be easily transferable
into a formal proof that Hilbert II accepts. And even one simple step in an
mathematical proof could mean hard work for a theorem prover.

The focus lies on simple steps for an mathematican. If the step is no problem for
an advanced theorem prover but for humans it is not easy to draw the conclusion
there is also no need for Hilbert II to be able to do that too.

1These meta rules could always be replaced by a sequence of simple basic rule applications.

14 CHAPTER 2. FUNCTIONAL SPECIFICATION

Chapter 3

Other Requirements

Although English is the project language and many mathematicians can read
English texts about their special subject Hilbert II supports different text
languages.

The data of Hilbert II can be completely presented in XML documents. The
current XML schema specification can be found here:

http://www.qedeq.org/current/xml/qedeq.xsd.

And it’s documentation is here:

http://www.qedeq.org/current/xml/qedeq.html.

The data access works with the common internet protocols http and ftp. This
defines platform independence and enables different software implementations.
Everybody can implement her own program suite that operates with QEDEQ
modules. So independent proof checkers, document generators, analyzers and
so on can be developed. Common interface for all these programs is the XML
specification with it’s additional semantical restrictions.1

The reference software is written in Java and should run on most operating
systems.

As time goes by Hilbert II will expand. This includes the format of data
presentations. The old format must be supported further on. 2

1As there are for example: quantification over already bound variables, unknown references,
impoper use of logical laws and so on.

2This will be true for the program version 1.00.00.

15

http://www.qedeq.org/current/xml/qedeq.xsd
http://www.qedeq.org/current/xml/qedeq.html

16 CHAPTER 3. OTHER REQUIREMENTS

Chapter 4

Technical Specification

This chapter gives some information about the reference implementation. It
talks about architecture, data structures, software architecture, algorithms and
tools.

4.1 Software architecture

The mathematical knowledge of this project is organized in XML files that
are called QEDEQ modules. Such a QEDEQ module could have references to
other QEDEQ modules which are somewhere in the world wide web. It’s main
structure looks like an LATEX book file. There exist a special kind of subsections
called node that contain an abbreviation, axiom, definition or proposition. Each
node is labeled and could be referenced by that label. These XML files can be
accessed via http or ftp within the internet.

The QEDEQ modules stand under the GNU Free Documentation License
(GFDL), the software of this project under the GNU General Public License
(GPL).

The reference implementation is programmed in Java as a standalone program.
The XML structure is reflected in the Domain Object Model (DOM). The data
access tier is file based. All of the business logic (loading, checking, generating,
. . .) is encapsulated in the business tier. The GUI of the reference implementa-
tion is implemented in Swing.

Current development environment is eclipse.

4.2 Third party tools and libraries.

The following tools and libraries are used in the development process.

Eclipse Java IDE
Ant apache build tool
Xerces apache XML parser
Checkstyle coding standard checker
JUnit a simple framework to write repeatable tests
Clover code coverage analysis tool

17

18 CHAPTER 4. TECHNICAL SPECIFICATION

Chapter 5

Project Plan

In contrast to the well developed prototype the main project has only reached
pre-alpha stage, but the mathematical grounding of set theory has made good
progress. Only the derivation of elementary propositions and definition of nec-
essary notations will be done. The propositions are always written as formulas,
the proofs are informal as usual. The outcome of this is a script of axiomatic
set theory.

With common mathematical practice in mind, the set theory used in Hilbert II
is not ZFC but MK (by J. L. Kelley (1955), also called extended NBG).

For the current stage see:

http://www.qedeq.org/current/doc/math/qedeq_set_theory_v1_en.pdf.

During the completion of the set theory script the QEDEQ format will be ex-
tended to be suitable for formal correct notations and proofs of that script. The
syntax of this formal language should be very near to the common mathemat-
ical language. The script will be complemented with formal proofs. After this
process an automatic proof verification for the newly created QEDEQ module
is possible. The old informal proofs are also part of the QEDEQ module and
enable a human access to the mathematical contents.

The next major milestone is the release of the version 1.00 which has the fol-
lowing specification:

• The syntax of QEDEQ module files is so rich, that the notations and
formulas of basic set theory can be expressed.

• There is a kernel, which can check QEDEQ module files on a syntactic
basis. For example it should recognize, that a formula is not well formed
if it was quantified twice over the same subject variable. The kernel still
couldn’t check a proof (that means it couldn’t decide if a formula derives
logically from others).

• The generation of LATEX files out of QEDEQ modules is possible.

• The script of basic set theory is completed. It is fully formalized and
contains formal proofs for all propositions. Ideally the mathematical de-
scription texts are written in different detail levels and in the languages
English and German.

19

http://www.qedeq.org/current/doc/math/qedeq_set_theory_v1_en.pdf

20 CHAPTER 5. PROJECT PLAN

Index

LATEX, 12

formal proof, 10
free access, 9

intended audience, 12

meta rule, 10, 12, 13

proof finder, 13
prototype, 10
publishing framework, 10

QEDEQ format, 11
QEDEQ module, 11

set theory, 11, 19

theorem prover, 10, 13

use case, 12

XML, 15

21

	Executive Summary
	Preface
	1 Introduction
	1.1 Motivation
	1.2 Gödel's Incompleteness Theorem
	1.3 Goals

	2 Functional Specification
	2.1 Functional and Data Requirements
	2.1.1 Mathematics
	2.1.2 QEDEQ Format

	2.2 Use cases
	2.2.1 REMAPDF Reading mathematical text.
	2.2.2 REMAHTML Reading mathematical text.
	2.2.3 REMAJAVA Reading mathematical text.
	2.2.4 CHECKPRE Check preconditions for applying.
	2.2.5 TRLATEX Transformation of LaTeX files.
	2.2.6 GENLATEX Generation of LaTeX files.
	2.2.7 GENHTML Generation of HTML files.
	2.2.8 CHECKTEO Formal verification of theorem.

	2.3 Non Goals

	3 Other Requirements
	4 Technical Specification
	4.1 Software architecture
	4.2 Third party tools and libraries.

	5 Project Plan
	Index

