This text defines the format of a qedeq module file for the rule version 1.00.00.
Such a file contains ASCII characters and has a lisp like structure. There are
two kinds of axioms: integers and strings. Strings are quoted (”) that means
strings are surrounded by quotes (”) and quotes inside the strings are escaped
by doubling them. All other types are lists preceded by an function operator.
These lists are surrounded by brackets and contain a sequence of elements,
separated by commas. Each element is an atom or further operator lists. E.g.:

AND(PROP (1), OR(PROP(2), PROP(3)))

The following text shows the structure of a qedeq module file in BNF notation.

(MODULE)

::= ’MODULE(’
(HEADER),
[(IMPORTS)],
[(USEDBY)],
(PARAGRAPHS)
)75

(HEADER)

::= ’HEADER(’

(SPEC),

(HEADLINE),
(DESCRIPTION),
(EMAIL),
(AUTHORS)
:) ) ;

(SPEC)
1= ’SPEC(’
(NAME),
(VERSION),
(VERSION),
(LOCATIONS)

;));

(NAME)
= ’NAME(’
(text)
7) ) ;

(text)

start terminal for gedeq module format

header

needed other qedeq modules

this gedeq module is used by

paragraphs with axioms, propositions etc.

header of a qedeq module

specification of this module

title of this module

abstract

email address of module administrator
authors of this module

specification of a gedeq module

name of gedeq module

version of qedeq module

needed rule version

list of absolute or relative URLs,

fied module could be found, only the path to
the module should stand here, the file name is:

(NAME)_(VERSION)_(VERSION).qedeq

name

text atom, an arbitrary string



(VERSION)
::= ’VERSION(’
(text)
)) ) ;

(LOCATIONS)

::= ’LOCATIONS(’
(LOCATION),
{(LOCATION)}
)) ) ;

(LOCATION)

= ’LOCATION(’
(text)
)) ) ;

(HEADLINE)
::= ’HEADLINE(’
(text)
:) ) ;

(DESCRIPTION)
::= ’DESCRIPTION(’
(text)
:) b ;

(EMAIL)
= ’EMAIL(’
(text)
z) ) ;

(AUTHORS)

::= ’AUTHORS(’
(AUTHOR),
{(AUTHOR) }
)) ) ;

(AUTHOR)
= ?AUTHOR(’
(text),
(EMAIL)
7) ) ;

version nummer in format nn.nn.nn

list of qedeq module URLs

at least one URL must be there

relative or absolute URL, which points to the directory

of an qedeq module file

title of a qedeq module

description of qedeq module (”abstract”)

email address

author list

author name
email address of author



(IMPORTS)

::= 2IMPORTS(’
(IMPORT),
{(IMPORT)}
7) ) ;

(IMPORT)

::= 2IMPORT(’
(SPEC),
(LABEL)
J) J ;

(LABEL)
= ’LABEL(’
(text)
)) );

(USEDBY)
= ’USEDBY(’
(SPEC),
{{SPEC))
:) 7;

(PARAGRAPHS)
::= ’PARAGRAPHS (’
(PARAGRAPH),
{(PARAGRAPH)}

)));

(PARAGRAPH)

::= ’PARAGRAPH(’

(LABEL),
[(text)],
(

ABBREVIATION>

AXIOM) |

PROPOSITION)

)
text>
:) > .

(ABBREVIATION)
::= ?ABBREVIATION(’

(FORMULA) ,

(
(
(DECLARERULE)
(
(

list of imported modules

informations about an import module

module specification
alias name for an imported module

label for referencing

list of modules, which use this one

paragraphs

paragraph

reference anchor
LaTeX text

or list
LaTeX text

definition of an abbreviation

operator to be defined with pattern variables



(FORMULA)

))J;

(FORMULA)
(
(PROP) |
(NOT) |
(AND) |
(OR) |
(IMPL) |
(EQUI) |
(PREDVAR) |
(FORALL) |
(EXISTS) |
(FPATTERN)

(SPATTERN)
))7;

(PROP)
= ’PROP(’
(number)

7) ) ;
(number)

(NOT)
= NOT(’?
(FORMULA)
)) ) ;

(AND)
= 2AND(’
(FORMULA),
(FORMULA)
7) J ;

(OR)
w= ’0R(C’
(FORMULA),
(FORMULA)
:);;

definition for the operator, the same pattern variables
as before must occur

formula of predicate calculus

proposition variable

negation

conjunction (logical ”and”)

disjunction (logical "or”)

implication

logical equivalence

predicate variable

universal quantifier

existential quantifier

pattern variable which can stand for any formula (used
for abbreviations)

pattern variable which can stand for any predicate va-
riable (used for abbreviations)

or list

proposition variable

identification number

numeric atom, an integer

negation

formula to negate

conjunction (logical ”and”)

first argument
second argument

disjunction (logical "or”)

first argument
second argument



(IMPL) logical implication

= IMPL(’
(FORMULA) , first formula
(FORMULA) second formula
7) ) ;
(EQUI) logical equivalence
= JEQUI(C’
(FORMULA) , formula
(FORMULA) formula
J) ) ;
(PREDVAR) predicate variable
::= ’PREDVAR(’
(number), identification number
(L) list of subject variables
;) ) ;
(L) list of subject variables
= L
{{vaR)}
:) ) ;
(VAR) subject variable
n= ’VAR(’
(number) identification number
)7
(FORALL) universal quantifier
= ’FORALL(’
(VAR), quantify over this subject variable
(FORMULA) formula which has the above subject variable as a free
variable
J) ) ;
(EXISTS) existential quantifier
= ’EXISTS(’
(VAR), quantify over this subject variable
(FORMULA) formula which has the above subject variable as a free
variable
)7
(FPATTERN) formula pattern variable
::= ’FPATTERN(’



(number)

2));

(SPATTERN)
= ’SPATTERN(’
(number)

:);;

(AXIOM)
= AXIOM(C’
(FORMULA)
:) ) ;

(DECLARERULE)
::= ’DECLARERULE(’
(text),
(text),

{(LINK)}
)) ) ;

(LINK)
= ’LINK(’
(text)
7) ) ;

(PROPOSITION)
::= ’PROPOSITION(’
(SENTENCE) ,
(PROCF)
:) ) ;

(SENTENCE)
::= ’SENTENCE(’
(FORMULA)
z) ) ;

(PROOF)

::= ’PROOF(’
(LINE),
{(LINE)}
:) ) ;

identification number

subject variable pattern variable

identification number

declaration of an axiom, that is a stressed formula

axiom formula

declaration of a new rule
rule name

rule description
references to necessary axioms, propositions

rererences to a label of an axiom, proposition

label name

consists of a mathematical theorem and its proof

theorem
proof, last proof formula must be identical to theorem

mathematical theorem

true mathematical formula

proof of a mathematical theorem, consists sequent proof
lines, each one is constructed by using logical rules by
foregoing proof lines, axioms, abbreviations or proposi-
tions

proof lines



(LINE)

= ’LINE(’
(FORMULA),
(
(ADDAXIOM)
(ADDSENTENCE)
(MODUSPONENS)
(REPLACEPROP)
(
(

USEABBREVIATION) |
REVERSEABBREVIATION)

(RENAMEFREEVARIABLE)
(RENAMEBOUNDVARIABLE)

(REPLACEPREDICATE) |

(GENERALIZATION)

(PARTICULARIZATION)

;));

(ADDAXIOM)
::= ?ADDAXIOM(’
(LINK)
7) ) ;

(ADDSENTENCE)
::= ?ADDSENTENCE(’
(LINK)
}) J ;

(MODUSPONENS)
::= ’MODUSPONENS (’
(number),
(number)

)));

(REPLACEPROP)
::= ’REPLACEPROP (’
(number),
(PROP),
(FORMULA)
7) ) ;

(USEABBREVIATION)

single proof line, consists of a derived formula and an
information about the used rule and necessary references
that enable the derivation

simple addition of an axiom to the prooflines
simple addition of an already proved proposition
execution of Modus Ponens

replacement of an propositional variable

usage of an abbreviation

reverse an abbreviation

rename a free subject variable
rename a bound subject variable

replace a predicate variable by a formula
execution of generalization

execution of particularization
or list

add an axiom

axiom reference

add an already proven proposition

Modus Ponens

proof line number which references formula A
proof line number which references formula A -; B

propositional variable replacement
proof line number at which the rule should be executed

this propositional variable should be replaced
replacement

use definition of an abbreviation



::= ’USEABBREVIATION(’
(number),
(LINK),
(number)

))J;

proof line number at which the rule should be executed
abbreviation reference

this occurrence number of the abbreviation shall be
transformed

(REVERSEABBREVIATION) reverse definition of an abbreviation

::= ’REVERSEABBREVIATION(’
(number),
(LINK),
(number)

))7;

(RENAMEFREEVARIABLE)
::= ’RENAMEFREEVARIABLE(’
(number),
(VAR),
(VAR)
7) ) ;

proof line number at which the rule should be executed
abbreviation reference

this occurrence number of the abbreviation pattern shall
be replaced by the abbreviation

rename of a free subject variable

proof line number at which the rule should be executed
rename this free subject variable
with this (non bound) subject variable

(RENAMEBOUNDVARIABLE#gname of a bound subject variable (at a specific locati-

::= ’RENAMEBOUNDVARIABLE(’
(number),
(VAR),
(VAR),

(number)

:);;

(REPLACEPREDICATE)
::= ’REPLACEPREDICATE(’
(number),
(PREDVAR),
(FORMULA)

on)

proof line number at which the rule should be executed
rename this bound subject variable

with this (non free) subject variable, which thereby must
not get bound a second time

this occurrence of an quantor with the designated sub-
ject variable shall be target of the operation

replace predicate by formula

proof line number at which the rule should be executed
with pairwise different pattern variables as arguments
formular which contains the same pattern variables, the
set of free subject variables must be disjunct to the set
of bounded subject variables of the referenced proof li-
ne and conversely (the set of bounded subject variables
must be disjunct to the set of free subject variables of the
referenced proof line) and the predicate variable must
not occur in the sphere of action of an quantor with an
associated subject variable that is also contained in this
formula



(GENERALIZATION)
::= ’GENERALIZATION(’
(number),

(VAR)
J) J ;

(PARTICULARIZATION)
::= ’PARTICULARIZATION(’
(number),

(VAR)
)) J ;

generalization rule

proof line number at which the rule should be executed,
must have the form A -; B(x), with x not contained in
A

this subject variable is generalized

particularization rule

proof line number at which the rule should be executed,
must have the form A(x) -; B, with x not contained in
B

this subject variable is particularized



