This text defines the format of a qedeq module file for the rule version 1.00.00. Such a file contains ASCII characters and has a lisp like structure. There are two kinds of axioms: integers and strings. Strings are quoted (") that means strings are surrounded by quotes (") and quotes inside the strings are escaped by doubling them. All other types are lists preceded by an function operator. These lists are surrounded by brackets and contain a sequence of elements, separated by commas. Each element is an atom or further operator lists. E.g.:

```
AND(PROP(1), OR(PROP(2), PROP(3)))
```

The following text shows the structure of a qedeq module file in BNF notation.

```
\langle MODULE \rangle
                                          start terminal for qedeq module format
  ::= 'MODULE('
         \langle \text{HEADER} \rangle,
                                          header
         [\langle IMPORTS \rangle],
                                          needed other gedeg modules
         [(USEDBY)],
                                          this gedeg module is used by
         ⟨PARAGRAPHS⟩
                                          paragraphs with axioms, propositions etc.
        ')';
\langle \mathbf{HEADER} \rangle
                                          header of a qedeq module
  ::= 'HEADER('
         \langle \text{SPEC} \rangle,
                                          specification of this module
         ⟨HEADLINE⟩,
                                          title of this module
         ⟨DESCRIPTION⟩,
                                          abstract
                                          email address of module administrator
         ⟨EMAIL⟩,
         ⟨AUTHORS⟩
                                          authors of this module
        ')';
\langle SPEC \rangle
                                          specification of a gedeg module
  ::= 'SPEC('
                                          name of qedeq module
         \langle \mathtt{NAME} \rangle ,
         \langle \mathtt{VERSION} \rangle,
                                          version of qedeq module
         ⟨VERSION⟩,
                                          needed rule version
         ⟨LOCATIONS⟩
                                          list of absolute or relative URLs, the speci-
                                          fied module could be found, only the path to
                                          the module should stand here, the file name is:
                                          \langle NAME \rangle_{-} \langle VERSION \rangle_{-} \langle VERSION \rangle_{-} gedeq
        ')';
\langle NAME \rangle
                                          name
  ::= 'NAME('
         ⟨text⟩
        ')';
\langle \mathbf{text} \rangle
                                          text atom, an arbitrary string
```

```
\langle VERSION \rangle
                                                    version nummer in format nn.nn.nn
   ::= 'VERSION('
           \langle \texttt{text} \rangle
          ,),;
\langle \mathbf{LOCATIONS} \rangle
                                                    list of qedeq module URLs
   ::= 'LOCATIONS('
          \langle \texttt{LOCATION} \rangle,
                                                    at least one URL must be there
           { \(\lambda \text{LOCATION} \) \}
          ')';
\langle \mathbf{LOCATION} \rangle
                                                    relative or absolute URL, which points to the directory
                                                    of an qedeq module file
   ::= 'LOCATION('
           \langle \text{text} \rangle
          ')';
\langle \mathbf{HEADLINE} \rangle
                                                    title of a qedeq module
   ::= 'HEADLINE('
           \langle \texttt{text} \rangle
          ')';
\langle \mathbf{DESCRIPTION} \rangle
                                                    description of gedeq module ("abstract")
   ::= 'DESCRIPTION('
           \langle \text{text} \rangle
          ')';
\langle \mathbf{EMAIL} \rangle
                                                    email address
   ::= 'EMAIL('
           \langle \texttt{text} \rangle
          ')';
\langle AUTHORS \rangle
                                                    author list
   ::= 'AUTHORS('
          \langle \mathtt{AUTHOR} 
angle ,
           \{\langle \mathtt{AUTHOR} \rangle\}
          ')';
\langle AUTHOR \rangle
   ::= 'AUTHOR('
           \langle \mathtt{text} \rangle,
                                                    author name
           \langle \mathtt{EMAIL} \rangle
                                                    email address of author
```

')';

```
\langle \mathbf{IMPORTS} \rangle
                                                  list of imported modules
   ::= 'IMPORTS('
          \langle \mathtt{IMPORT} \rangle,
          \{\langle \mathtt{IMPORT} \rangle\}
          ')';
\langle \mathbf{IMPORT} \rangle
                                                  informations about an import module
   ::= 'IMPORT('
          \langle \mathtt{SPEC} \rangle,
                                                  module specification
           \langle \mathtt{LABEL} \rangle
                                                  alias name for an imported module
          ')';
\langle \mathbf{LABEL} \rangle
                                                  label for referencing
   ::= 'LABEL('
           \langle \texttt{text} \rangle
          ')';
\langle \mathbf{USEDBY} \rangle
                                                  list of modules, which use this one
   ::= 'USEDBY('
           \langle \mathtt{SPEC} \rangle,
           \{\langle SPEC \rangle\}
          ')';
\langle \mathbf{PARAGRAPHS} \rangle
                                                  paragraphs
   ::= 'PARAGRAPHS('
           \langle \mathtt{PARAGRAPH} \rangle ,
           \{\langle PARAGRAPH \rangle\}
          ')';
\langle \mathbf{PARAGRAPH} \rangle
                                                  paragraph
   ::= 'PARAGRAPH('
           \langle \mathtt{LABEL} \rangle ,
                                                  reference anchor
                                                  LaTeX text
           [\langle text \rangle],
            ⟨ABBREVIATION⟩ |
            \ \( \MOIXA \)
            ⟨DECLARERULE⟩ |
            ⟨PROPOSITION⟩
           ),
                                                  or list
                                                  LaTeX text
           [\langle \texttt{text} \rangle]
          ')';
\langle ABBREVIATION \rangle
                                                  definition of an abbreviation
   ::= 'ABBREVIATION('
           ⟨FORMULA⟩,
                                                  operator to be defined with pattern variables
```

```
\langle FORMULA \rangle
                                             definition for the operator, the same pattern variables
                                             as before must occur
         ')';
\langle FORMULA \rangle
                                             formula of predicate calculus
           ⟨PROP⟩ |
                                             proposition variable
           \langle \text{NOT} \rangle |
                                             negation
           \langle AND \rangle |
                                             conjunction (logical "and")
                                             disjunction (logical "or")
           \langle OR \rangle |
           ⟨IMPL⟩ |
                                             implication
           ⟨EQUI⟩ |
                                             logical equivalence
           \langle \mathtt{PREDVAR} \rangle |
                                             predicate variable
           ⟨FORALL⟩ |
                                             universal quantifier
           ⟨EXISTS⟩ |
                                             existential quantifier
           ⟨FPATTERN⟩ |
                                             pattern variable which can stand for any formula (used
                                             for abbreviations)
           \langle SPATTERN \rangle
                                             pattern variable which can stand for any predicate va-
                                             riable (used for abbreviations)
                                             or list
         ')';
\langle \mathbf{PROP} \rangle
                                             proposition variable
  ::= 'PROP('
         \langle number \rangle
                                             identification number
         ')';
\langle number \rangle
                                             numeric atom, an integer
\langle \mathbf{NOT} \rangle
                                             negation
  ::= 'NOT('
         \langle FORMULA \rangle
                                             formula to negate
         ')';
\langle AND \rangle
                                             conjunction (logical "and")
  ::= 'AND('
         \langle {\tt FORMULA} \rangle ,
                                             first argument
         ⟨FORMULA⟩
                                             second argument
         ')';
\langle \mathbf{OR} \rangle
                                             disjunction (logical "or")
  ::= 'OR('
         \langle \texttt{FORMULA} \rangle ,
                                             first argument
         \langle \texttt{FORMULA} \rangle
                                             second argument
         ')';
```

```
\langle \mathbf{IMPL} \rangle
                                                 logical implication
   ::= 'IMPL('
          \langle {	t FORMULA} 
angle ,
                                                  first formula
                                                 second formula
          \langle FORMULA \rangle
          ')';
\langle \mathbf{EQUI} \rangle
                                                 logical equivalence
   ::= 'EQUI('
          \langle \texttt{FORMULA} \rangle,
                                                  formula
          ⟨FORMULA⟩
                                                  formula
          ')';
\langle \mathbf{PREDVAR} \rangle
                                                  predicate variable
   ::= 'PREDVAR('
          \langle number \rangle,
                                                 identification number
                                                 list of subject variables
          \langle \mathtt{L} 
angle
          ')';
\langle \mathbf{L} 
angle
                                                 list of subject variables
   ::= 'L('
          \{\langle \mathtt{VAR} \rangle \}
          ')';
\langle \mathbf{VAR} \rangle
                                                 subject variable
   ::= 'VAR('
          \(number\)
                                                 identification number
          ')';
\langle \mathbf{FORALL} \rangle
                                                  universal quantifier
   ::= 'FORALL('
          \langle VAR \rangle,
                                                  quantify over this subject variable
          \langle \texttt{FORMULA} \rangle
                                                  formula which has the above subject variable as a free
                                                  variable
          ')';
\langle \mathbf{EXISTS} \rangle
                                                  existential quantifier
   ::= 'EXISTS('
          \langle {\tt VAR} \rangle ,
                                                  quantify over this subject variable
          ⟨FORMULA⟩
                                                  formula which has the above subject variable as a free
                                                  variable
          ')';
\langle \mathbf{FPATTERN} \rangle
                                                  formula pattern variable
   ::= 'FPATTERN('
```

```
identification number
         \langle number \rangle
         ')';
\langle \mathbf{SPATTERN} \rangle
                                            subject variable pattern variable
  ::= 'SPATTERN('
                                            identification number
         \langle number \rangle
         ')';
\langle \mathbf{AXIOM} \rangle
                                            declaration of an axiom, that is a stressed formula
  ::= 'AXIOM('
         ⟨FORMULA⟩
                                            axiom formula
         ')';
\langle \mathbf{DECLARERULE} \rangle
                                            declaration of a new rule
  ::= 'DECLARERULE('
         \langle \text{text} \rangle,
                                            rule name
         \langle \texttt{text} \rangle,
                                            rule description
         \{\langle \mathtt{LINK} \rangle\}
                                            references to necessary axioms, propositions
         <sup>,</sup>);
\langle LINK \rangle
                                            references to a label of an axiom, proposition
  ::= 'LINK('
         ⟨text⟩
                                            label name
         ')';
\langle PROPOSITION \rangle
                                            consists of a mathematical theorem and its proof
  ::= 'PROPOSITION('
                                            theorem
         ⟨SENTENCE⟩,
         \langle \mathtt{PROOF} \rangle
                                            proof, last proof formula must be identical to theorem
         ')';
\langle SENTENCE \rangle
                                            mathematical theorem
  ::= 'SENTENCE('
         \langle FORMULA \rangle
                                            true mathematical formula
         ')';
\langle \mathbf{PROOF} \rangle
                                            proof of a mathematical theorem, consists sequent proof
                                            lines, each one is constructed by using logical rules by
                                            foregoing proof lines, axioms, abbreviations or proposi-
                                            tions
  ::= 'PROOF('
         \langle \mathtt{LINE} \rangle,
                                            proof lines
         \{\langle \mathtt{LINE} \rangle\}
```

')';

```
\langle LINE \rangle
                                     single proof line, consists of a derived formula and an
                                     information about the used rule and necessary references
                                     that enable the derivation
  ::= 'LINE('
        ⟨FORMULA⟩,
         ⟨ADDAXIOM⟩ |
                                    simple addition of an axiom to the prooflines
         ⟨ADDSENTENCE⟩ |
                                    simple addition of an already proved proposition
         ⟨MODUSPONENS⟩
                                     execution of Modus Ponens
         ⟨REPLACEPROP⟩ |
                                    replacement of an propositional variable
         (USEABBREVIATION) |
                                     usage of an abbreviation
                                    reverse an abbreviation
         ⟨REVERSEABBREVIATION⟩
         ⟨RENAMEFREEVARIABLE⟩ | rename a free subject variable
         ⟨RENAMEBOUNDVARIABLE⟩
                                    rename a bound subject variable
         ⟨REPLACEPREDICATE⟩ |
                                     replace a predicate variable by a formula
                                     execution of generalization
         ⟨GENERALIZATION⟩ |
         ⟨PARTICULARIZATION⟩
                                     execution of particularization
       )
                                     or list
       ')';
\langle ADDAXIOM \rangle
                                     add an axiom
  ::= 'ADDAXIOM('
       \langle \texttt{LINK} \rangle
                                     axiom reference
       ')';
⟨ADDSENTENCE⟩
                                     add an already proven proposition
  ::= 'ADDSENTENCE('
        \langle LINK \rangle
       ')';
⟨MODUSPONENS⟩
                                     Modus Ponens
  ::= 'MODUSPONENS('
                                     proof line number which references formula A
        \langle number \rangle,
        (number)
                                     proof line number which references formula A -; B
       ')';
⟨REPLACEPROP⟩
                                     propositional variable replacement
  ::= 'REPLACEPROP('
        \langle \mathtt{number} \rangle,
                                     proof line number at which the rule should be executed
        \langle \mathtt{PROP} \rangle,
                                     this propositional variable should be replaced
        ⟨FORMULA⟩
                                     replacement
       ')';
\langle USEABBREVIATION \rangle
                                     use definition of an abbreviation
```

```
::= 'USEABBREVIATION('
                                    proof line number at which the rule should be executed
        \langle number \rangle,
        ⟨LINK⟩,
                                    abbreviation reference
        ⟨number⟩
                                    this occurrence number of the abbreviation shall be
                                     transformed
       ')';
⟨REVERSEABBREVIATION⟩ reverse definition of an abbreviation
  ::= 'REVERSEABBREVIATION('
                                    proof line number at which the rule should be executed
        \langle number \rangle,
        \langle LINK \rangle,
                                    abbreviation reference
        ⟨number⟩
                                    this occurrence number of the abbreviation pattern shall
                                    be replaced by the abbreviation
       ')';
⟨RENAMEFREEVARIABLE⟩ rename of a free subject variable
  ::= 'RENAMEFREEVARIABLE('
        \langle number \rangle,
                                    proof line number at which the rule should be executed
        \langle VAR \rangle,
                                    rename this free subject variable
                                    with this (non bound) subject variable
        \langle VAR \rangle
       ')';
(RENAMEBOUNDVARIABLE) ename of a bound subject variable (at a specific locati-
                                    on)
  ::= 'RENAMEBOUNDVARIABLE('
        \langle number \rangle,
                                    proof line number at which the rule should be executed
        \langle VAR \rangle,
                                    rename this bound subject variable
        \langle VAR \rangle,
                                    with this (non free) subject variable, which thereby must
                                    not get bound a second time
        ⟨number⟩
                                    this occurrence of an quantor with the designated sub-
                                    ject variable shall be target of the operation
       ')';
⟨REPLACEPREDICATE⟩
                                    replace predicate by formula
  ::= 'REPLACEPREDICATE('
        ⟨number⟩,
                                    proof line number at which the rule should be executed
        \langle PREDVAR \rangle,
                                    with pairwise different pattern variables as arguments
        ⟨FORMULA⟩
                                    formular which contains the same pattern variables, the
                                    set of free subject variables must be disjunct to the set
                                    of bounded subject variables of the referenced proof li-
                                    ne and conversely (the set of bounded subject variables
                                    must be disjunct to the set of free subject variables of the
                                    referenced proof line) and the predicate variable must
```

not occur in the sphere of action of an quantor with an associated subject variable that is also contained in this formula

')';

```
⟨GENERALIZATION⟩
                                        generalization rule
  ::= 'GENERALIZATION('
        \langle \mathtt{number} \rangle,
                                        proof line number at which the rule should be executed,
                                        must have the form A -; B(x), with x not contained in
        \langle {\tt VAR} \rangle
                                        this subject variable is generalized
        ')';
\langle PARTICULARIZATION \rangle
                                        particularization rule
  ::= 'PARTICULARIZATION('
        \langle number \rangle,
                                        proof line number at which the rule should be executed,
                                        must have the form A(x) -; B, with x not contained in
        \langle \mathtt{VAR} \rangle
                                        this subject variable is particularized
        ·) ';
```